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Abstract-This paper reports the results of an experimental study of heat transfer by combined forced and 
natural convection from a horizontal cylinder embedded in a porous medium composed of randomly 
packed glass spheres saturated with water. The direction of the flow of water was horizontal and normal 
to the longitudinal axis of the cylinder. The diameter of the cylinder, D, was 11.45mm and the equivalent 
diameter of the glass spheres was 3.072mm. It is shown that the condition Gr,/Rej, C 0.5 represents a 
conservative criterion for segregating heat transfer data that are predominantiy governed by forced 
convection from those in which natural convection effects are significant. A correlation hypothesis for 
convection heat transfer which is based upon four assumptions, primary among which is that the flow can 
be (conceptually) regarded as being composed of ‘coarse’ and ‘fine’ components, is presented. This 
hypothesis is shown to provide a basis for successfully correlating a set of experimental heat transfer data 
that extends from the Darcy regime into the turbulent regime and spans the intervening Forchheimer and 
transition regimes. It is suggested that the correlation procedure adopted here may yield useful results if 
applied to other geometries such as, for example, forced convection heat transfer in ducts packed with 

porous media. 

INTRODUCTION 

A THEORETICAL solution of the complex general prob- 
lem of forced convection heat transfer from a hori- 
zontal cylinder embedded in a porous medium with 
cross flow has not yet been achieved. We present here- 
in the results of an experimental study of this prob- 
lem in which the porous medium consists of randomly 
packed glass spheres. These results include a set of 
empirical correlation equations that are based upon a 
hypothesis which makes use of info~ation previously 
published in refs. [l-3]. The relevant information con- 
tained in these references is cited in the review of the 
literature which follows. 

REVIEW OF THE LITERATURE 

Since there is no sharp dividing line between natural 
and forced convection, it has been found helpful to 
define a criterion whereby natural convection effects 
may be neglected relative to the other. Fand and 
Keswani [1] have published the results of an exper- 
imental investigation of combined natural and forced 
convection heat transfer from a horizontal cylinder to 
water with cross flow which shows that when 

Gr, Rei2 < 0.5 (1) 

the predominant heat transfer mechanism is forced 
convection. When forced convection is predominant, 

t The lower bound for the Darcy regime, ReDL, is less than 
10e5. The cited upper bound, Re,,, = 2.3, is correct here but 
is reported incorrectly to be 2.1 in Table 1 in ref. 121. 

Fand and Keswani found that the following heat 
transfer correlation equation applies to the case of a 
horizontal cylinder in cross flow 

Nu = (0.255+0.699Re~‘)~r”~‘~. (2) 

In equation (2) all fluid properties are evaluated at the 
mean film temperature. 

Fand and Keswani [l] have shown that for values 
of Gr, Re,’ between 0.5 and 4 the contribution of 
natural convection effects of the Nusselt number for 
a horizontal cylinder in cross flow can be accounted 
for by adding a natural convection term to equation 
(2). For horizontal cross flow, which is the particular 
geometry considered herein, the added natural con- 
vection term is directly proportional to Gr, Re; 2, 

Fand et al. f2] have determined a correlation equa- 
tion for natural convection heat transfer from a hori- 
zontal cylinder embedded in a porous medium that is 
relevant to the present study. Their equation includes 
a term which accounts for viscous dissipation in high 
viscosity fluids such as silicone oil. If viscous dis- 
sipation is negligible, as in the present study using 
water, the said correlation equation reduces to the 
following : 

Nu = 0.653Gr$64q Pr0.525. (3) 

In order to deal with the heat transfer problem 
under consideration, it is necessary to have certain 
info~ation concerning the fiow of fluids through 
porous media. Reference [3] discusses five regimes of 
flow through porous media that are relevant to the 
present study, namely, the Darcy (for which 
ReDL c Red < Re,, = 2.3)t Forchheimer (for which 
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NOMENCLATURE 

A, B, C numerical constant Greek symbols 

C, specific heat of fluid at constant 
pressure ; 

a function of s, (1 ---E)‘/E~ 
coefficient of volumetric expansion of 

D diameter of test cylinder ; also distance fluid ; also a function of E, (1 - E)/E~ 

from leading edge of a flat plate E porosity 
d equivalent diameter of glass spheres &V wall-corrected porosity per equation (4) 

Cr, Grashof number, gD3/lAT/vZ Ic KozenyXarman constant 

Gr, Grashof number, gKDj?AT/v’ p dynamic viscosity of fluid 

9 gravitational constant V kinematic viscosity, p/p 
h heat transfer coefficient P density of fluid 
K permeability qJ a numerical parameter. 
k effective thermal conductivity per 

equation (5) 

k, equivalent thermal conductivity Subscripts 

kr> k, thermal conductivity of fluid, solid cal a quantity determined by calculation 
N number of data points exp a quantity determined by experiment. 
NU Nusselt number, hD/k 
P’ negative of the pressure gradient 
Pr Prandtl number, Q/k Error notation 

4 heat transfer per unit area per unit time E percent error, 1 OO(Nu,,, - Nu,,,)/ Nu._ 

Re, Reynolds number, Dv/v E max maximum percent error 

Red Reynolds number, dvjv E md percent mean deviation of error, 

Xl surface area per unit volume of porous 
medium ;c, I-&I/N 

Tb, T, bulk, surface temperature 
AT temperature difference, (T, - TJ 

percent root mean square error, 

V magnitude of Darcian velocity (volume 
rate of flow per unit area). 

5 = ReFL < Re, < Re,, = 80) and turbulent (for 

which Re, > Re,, = 120) regimes plus the transitions 

from Darcy to Forchheimer flow and from Forch- 

heimer to turbulent flow. 
In the Darcy regime the flow is dominated by vis- 

cous forces and it is laminar and the following equa- 
tion applies : 

P’d 
-=Cd 
W 

where the constant C = #,a and u = (1 --E)‘/E’. For 
porous matrices composed of spheres S, = 6/d. The 
inverse of C is called the permeability, denoted by K, 
of the porous medium. The value of the Kozeny- 
Carmen constant IC is reported to be 5.34 in ref. [3]. 

In the Forchheimer regime the flow is still laminar 
but inertial effects become significant and the fol- 
lowing equation applies : 

P’d 
- = Cld+C2 Re, 
W 

where C,d = Au/d, C2 = B/l/d and /l = (1 -s)/e’. The 

values of the dimensionless constants A and B are 
reported in ref. [3] to be as follows : A = 182, B = 1.92. 
It is shown in ref. [3] that equation (5) also applies in 
the turbulent flow regime but that the values of the 

dimensionless constants (primed to differentiate their 
notation) are as follows: A’ = 225, B’ = 1.61. 

The transitions between Darcy and Forchheimer 
flow and between Forchheimer and turbulent flow are 
difficult to characterize because they are not rep- 
resentable by simple equations such as equations (4) 
and (5). It is suggested in ref. [3] that this difficulty 
can be overcome without incurring significant error 
by assuming that a fictitious ‘transition Re,’ exists, 
denoted by Re,, (ReDF = 3), at which the flow 
abruptly changes from Darcy to Forchheimer flow, 
and that another such transition point exists, denoted 

by ReFT (Re, = loo), at which the flow abruptly 
changes from Forchheimer to turbulent flow. The 
aforestated assumption permits the characterization 
of the entire flow range of interest using equations (4) 

and (5). 
When an object, such as a cylinder, is embedded in 

a porous medium the porosity, E, of the medium varies 
near the surface of the object-this is known as the 
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‘wall effect’. For porous media whose matrices are 

composed of randomly packed spheres, E varies from 
0.36 far from a wall to unity at the wall. The rate of 
heat transfer from a heated object embedded in a 
porous medium is influenced by the wall effect. In 
their study of natural convection heat transfer from a 
horizontal cylinder embedded in a porous medium, 
Fand et al. [2] took the wall effect into account by 
replacing E where it appears in the following definition 
of the effective thermal conductivity of the porous 
medium 

k = Ekrf(1 -E)k, (6) 

by the so-called ‘wall corrected porosity’, E,, defined 
as follows : 

E, =a[1+;($] (7) 

where d/D is the ratio of the (spherical) particle diam- 
eter to the test cylinder diameter. The applicability of 
equation (7) was established in ref. [2] for d/D < 0.35. 

The values of k, in the present case (soda lime glass) 
may be calculated by the following equation : 

k, = 1.00416+ 1.6736 x 10-3T 

-4.184x 10-6T2 (8) 

where T is the temperature in “C and k, is expressed 
in W m- ’ “C ‘. The values of k, in the present case 
are those for water. The wall correction modifies both 
the Nusselt and Prandtl numbers via the effective ther- 
mal conductivity and it modifies the Grashof number 
via the permeability. 

A phenomenon that occurs in all flows through 
porous media, and which must be considered in the 
present investigation, is ‘dispersion’. The meaning of 
the term dispersion can be explained qualitatively by 
comparing the laminar one-dimensional flow of a fluid 
through a region of space in the presence of, and in 
the absence of, a porous matrix. In the absence of a 
porous matrix, the paths of all fluid particles are 
straight, parallel lines ; whereas, in the presence of a 
porous matrix, each fluid particle follows a non- 
rectilinear path through the interstices of the porous 
medium. The trajectory of each fluid particle in a 
porous medium is a stochastic process, the result of 
which is an overall migration, or ‘dispersion’ of the 
particles away from the straight, parallel lines they 
would have followed in the absence of the porous 
medium. Dispersion can be quantified in terms of a 
‘dispersion coefficient’ which has been shown by sev- 
eral authors to be a power function of Re,. 

EXPERIMENTAL APPARATUS 

AND PROCEDURE 

The apparatus used in the present study consisted 
of the water tunnel and heated test cylinder described 
in ref. [l] plus a matrix of glass spheres randomly 
packed into the test section of the tunnel around the 

heated cylinder. Figure 1 shows the geometry of the 
tunnel’s test section and its contents. The function of 
the perforated plates shown in Fig. 1 was to confine 
the glass spheres and yet allow a through-flow of 
water. The function of the screens shown in Fig. 1 
interposed between the glass spheres and the per- 
forated plates was to prevent clogging of the per- 
forations by the glass spheres. A thermocouple placed 
just upstream of the test section was used to measure 
the bulk temperature of the flowing water. The vel- 
ocity of the flow was controlled by means of a variable 
speed pump and measured by means of a series of 
calibrated orifices with which the tunnel is equipped. 
The velocity of flow in the test section was corrected 
for blockage by the cylinder in the same way as was 
done in ref. [ 11. 

The porous matrix used in this study consisted of 
randomly and tightly packed soda lime glass spheres 
having a nominal diameter of 3 mm. In order to deter- 
mine the diameter of the spheres precisely, one hun- 
dred spheres were weighed individually on a precision 
balance and, having determined the density of the 
glass, the mean equivalent diameter of the glass 
spheres was calculated and found to equal 3.072 mm. 
The porosity, E, of the porous medium was determined 
experimentally to be 0.3606. 

The heated test cylinder (diameter, D = 11.45 mm) 
contains a central electrical heating coil which was fed 
by a stable variable direct current power supply. A 
high precision wattmeter was used to measure the 
power dissipated in the test cylinder. A pair of inde- 
pendently powered guard heaters which flanked the 
central heater coil prevented axial heat transfer by 
conduction from the central heater. A pair of ther- 
mocouples located beneath the surface of the test cyl- 
inder was used to determine the surface temperature 
of the heated cylinder as described in ref. [ 11. 

The experimental data consisted of simultaneous 
measurements of the surface temperature of the test 
cylinder and the bulk temperature of the water cor- 
responding to arbitrarily imposed values of velocity 
in the tunnel and electrical power dissipation in the 
test heater. The ranges of the experimental variables 
used to determine the correlation equations presented 
below are as follows : 

2 < q(kW mm ‘) < 327 

19 < T&C) < 27 

2.5 < AT(C) < 61 

0.034 x lo- 3 6 v(m s- ‘) < 0.077 

0.13 < Re, < 344 

0.5 < Re, < 1280. 

It is estimated that experimental errors in the pre- 
sent measurements of temperature, heat flux and vel- 
ocity would result in errors not exceeding 3% in the 
Nusselt and Reynolds numbers. Additional errors in 
the determination of the Nusselt number were 
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FIG. 1. Test section of water tunnel. 

incurred due to the presence of air bubbles in the 
porous medium. Experience suggests that the presence 
of air bubbles can affect the present measured values 

of the Nusselt number by as much as 5%. 
In the course of this investigation the test section 

of the water tunnel was emptied and refilled with (the 
same amount) of glass spheres several times. This was 
done in order to ascertain whether the experimental 
measurements would change significantly if the pack- 
ing, which alters the ‘microstructure’ of the porous 
medium in the vicinity of the test specimen, is changed. 
It was found that the Nusselt number varied by about 
5% about a mean in response to changes in packing 
with no change in porosity. Thus, a maximum overall 
experimental error in an individual measurement of 
the Nusselt number of 13%, or even 15%, is not 
unlikely. 

METHOD OF DATA ANALYSIS 

An empirical correlation of experimental data is 
developed by adopting an appropriate ‘hypothesis’, 
which usually consists of an algebraic equation con- 
taining arbitrary constants, and then determining the 
numerical values of the constants by fitting the 
hypothesis to the experimental data. A rational search 
for an appropriate hypothesis can follow any one 
or a combination of the following three routes : (1) 
utilization of clues provided by the results of a more- 
or-less approximate theoretical analysis (in which case 
the resulting correlation is called ‘semi-empirical’ ; (2) 
adoption of forms which previous experience has 
demonstrated ‘work’ in analogous situations ; (3) 
adoption of a form based upon physical reasoning 
but without the advantages of possessing the results 
of a theoretical analysis or prior experience in an 
analogous case. Since no theoretical solution to the 
present general problem is available, the method fol- 
lowed in the present study to determine a correlation 

hypothesis was a combination of procedures (2) and 

(3) above. 
The correlation hypotheses adopted in the present 

investigation are based upon four plausible assump- 
tions concerning the physical processes that occur in 
the problem under consideration. The first assump- 
tion (Al) is that cross flow past a heated cylinder 
embedded in a porous medium can be decomposed 
into two components, a ‘coarse’ component and a 

‘fine’ component. The coarse component is a flow that 
has (conceptually) a velocity at every point in the 
field ; thus, from the ‘coarse’ point of view, the porous 
matrix is ‘transparent’ to the flow. (Transparency is 
implicit in the well-known ‘volume averaging’ method 
of analyzing flows through porous media.) The coarse 

flow can be visualized as being that flow which would 
occur around a heated cylinder if the cylinder were 
immersed in a hypothetical fluid whose thermal con- 
ductivity was equal to the (wall-corrected) thermal 
conductivity of the porous medium and all of whose 
other thermophysical properties were the same as 
those of the fluid which saturates the porous medium. 
The fine component refers to the meandering flow 
through the interstitial spaces between the particles of 
the porous medium. The second assumption (A2) is 
that the influence of the coarse component of the flow 
in a porous medium upon the Nusselt number can 
be represented by analogous equations-such as, for 
example, equation (2) in the case of forced con- 
vection-if the thermal conductivity is taken to be the 
(wall corrected) equivalent thermal conductivity of 
the porous medium. The third assumption (A3) is that 
the fine component of flow will influence the diffusion 
of momentum near a heated surface and hence will 
change the numerical value of the exponent of the 
Prandtl number in the analogous equation. The fourth 
assumption (A4) is that the fine component of flow 
will, via dispersion, modify the dependence of the 
Nusselt number upon the Reynolds number and that 
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this modification can be represented by multiplying 
the analogous equation by a factor which is pro- 
portional to a power function of Re,,. Taken together, 
these four assumptions lead to the following cor- 
relation hypothesis for forced convection : 

Nu = [(0.255+0.699Re~5)Pro~Zg][Pr’][CRe$] (9) 

where the brackets represent, successively, (A2), (A3) 
and (A4) ; and C, x and y are constants. Again, the 
equivalent wall-corrected thermal conductivity is to 
be used in equation (9). 

A criterion for discriminating between those exper- 

imental data for which natural convection effects were 
negligible or not was established and applied. The 
(predominantly) forced convection data which fell 
into the Darcy, Forchheimer and turbulent regimes 
were correlated empirically using equation (9) by 
determining the optimum values of the constants C, 
x and y based upon the experimental data and then 
demonstrating that the errors incurred by the cor- 
relations so determined uis-d-uis the data are within 
acceptable bounds. These correlations were then 
shown to adequately represent the two intervening 
transition regimes by employing the assumption (see 
above) of the existence of (fictitious) transition points 
at Re,, = 3 and Re, = 100. 

The general method described above was also used 
to correlate those data for which natural convection 
effects are not negligible in comparison with forced 
convection effects. This procedure is described in 
detail below. 

CORRELATION EQUATIONS 

Forced convection : DarcyJow 
Well over 100 experimental data points were 

obtained in the Darcy regime (Re, < 2.3). It was obvi- 
ous that natural convection effects would not be neg- 
ligible for some of these points, namely, for those 
corresponding to relatively high AT and low velocity ; 
and hence it was necessary to eliminate such points 
from consideration in the present endeavor. 

In order to establish a quantitative criterion where- 
by irrelevant data points (i.e. data points for which 
natural convection effects are not negligible) could 
be identified and eliminated from consideration, the 
following procedure was adopted. First, it was 
assumed, by analogy with equation (1), that 
Gr, Re;* is a quantity which provides a measure of 
the relative importance of natural convection to for- 
ced convection for heat transfer in porous media. This 
assumption implies that the ‘coarse’ component of 
flow discussed above provides an adequate measure 
of the relative importance of natural and forced con- 
vection. Since the magnitude of the upper bound on 
Gr, Re; ’ whereby a judgement can be rendered as to 
whether natural convection is negligible in a particular 
case was not known, the upper bound was stated in 

Table 1. Errors incurred by equation (9) corresponding to 
different values of 4 for Red < 2.3 

b, N % Emd % I &lax I 

0.2 39 5.51 11.1 
0.3 48 5.52 11.8 
0.4 54 5.64 11.5 
0.5 60 5.42 11.4 
0.6 63 5.55 11.2 
0.7 67 5.52 12.2 
0.8 71 5.65 12.5 
0.9 77 5.67 13.1 
1.0 78 5.63 13.2 
1.5 90 6.07 15.3 
2.0 99 6.36 17.4 
4.0 111 7.93 22.8 

terms of an unknown constant; thus, the criterion 

becomes 

Gr,ReL2 < 4 (10) 

where r#~ is a constant yet to be determined. Next, the 

value of r#r was arbitrarily chosen equal to 4. This 
choice is purposely too lax, that is, it does not elim- 

inate points from consideration which should be elim- 
inated. One hundred and eleven experimental data 
points that fell in the Darcy regime satisfied the con- 
dition Gr, Re,’ < 4 = 4. A computerized regression 

procedure was then used to calculate the values of C, 
x and y in equation (9) corresponding to minimum 
E,, for these 111 points. The values of l&,,l and Emd 
were also calculated and are listed in Table 1. 

Table 1 shows that for I#J = 4, the errors incurred 

by equation (9) in particular IEmax;l, are excessive com- 
pared with the overall experimental error in the 
measurement of the Nusselt number. This was 
expected, inasmuch as equation (9) purports to rep- 
resent forced conoection, whereas some of the data 
points considered when 4 = 4 contain non-negligible 
natural convection effects. Having verified this antici- 
pated result, the value of 4 was then decreased in 
stages and the correlation procedure using equation 
(9) was repeated with the results listed in Table 1. 

Table 1 shows that when 4 < 0.6, the errors remain 

nearly constant and are consistent with the magnitude 
of the overall experimental error in the measurement 
of the Nusselt number. In consideration of equation 
(1) the conservative value r$ = 0.5 was adopted, and 
with it the criterion embodied in equation (10) 
becomes 

Gr, Re, 2 < 0.5. (11) 

The preceding unbiased analysis of the data leads 

to a value of r#~ very nearly identical to the number on 
the right-hand side of equation (1). This constitutes 
empirical evidence of the validity of the assumption 
that an analogy exists between the present case and 
the case corresponding to equation (I), and that the 
coarse component of the flow provides an adequate 
measure of the relative importance of natural and 
forced convection. It is relevant to mention here that 
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Table 2. Errors incurred by equations (12 j( 15) in applicable ranges of Re, 

Range Equation N Em, x IO3 %E& % I &*x I 
-- 

Re, 4 ReDw 12 60 8.21 5.42 11.4 
Re,H < Red G Re,, 12 28 15.9 1.35 15.2 
Re,, < Red $ ReFL 13 57 10.5 7.09 16.9 
Re,, < Red < ReF,, 13 438 1.80 2.95 12.8 
ReFH c Red < Re,, 13 46 8.42 3.59 15.7 
Re- -c Red d ReTL 14 37 6.72 2.3 1 13.2 
Red > ReTL I4 I68 2.75 2.53 15.0 
Re, < ReDH 15 51 8.22 4.74 13.7 

~-I 
ReDH = 2.3, Re,, = 3.0, RefL = 5.0, ReFH = 80, RQ~ = 100, ReTL = 120. 

Cheng [4] determined analytically an analogous cri- 
terion, Gr, Re, < 0.15, for aiding flow. This criterion 
was found to be overly restrictive when applied to the 
present case. 

The optimum values of C, x and y corresponding 
to Gr, ReG * < 0.5 in the Darcy regime are 2.17, 
-0.102 and 0.230, respectively. Thus, equation (9) 
yields the following correlation for forced convection 
heat transfer from a cylinder embedded in a porous 
medium with cross flow in the Darcy regime : 

Nu = 2.17(0.255+0.699Re~*)Pr”~1g~ Retz3’. (12) 

The errors incurred by equation (12) v&-ii-vis the 
experimental data are listed in Table 2. 

Forced convection : Forchheimer and t~rb~lent~o~s 
None of the experimental data points which fell in 

the Forchheimer or turbulent regimes were eliminated 
by the criterion embodied in equation (11). The opti- 
mum values of the constants C, x and y for the For- 
chheimer regime were 2,15, - 0.136 and 0.126: respec- 
tively ; and for the turbulent regime they were 1.48, 0 
and 0.179, respectively. These values of the constants 
result in the Following correlation equation for For- 
chheimer flow : 

Nu = 2.15(0.255+0.699Re~J)Pr0~‘34 Re21z6. (13) 

and for turbulent flow : 

NU = 1.48(0.255+0.699Re~5)Pr0~290 Rej,“‘. (14) 

The errors incurred by these correlation equations vis- 
ir-vis the experimental data are listed in Table 2. It is 
interesting to note that the result x = 0 for turbulent 
flow implies that in this regime the “fine’ component 
of the flow does not affect the exponent on Pr that is 
determined (conceptually) by the ‘coarse’ component 
of the flow. 

Forced convection : transifion regimes 
The errors incurred by using equation (12) to rep- 

resent the data from ReDH = 2.3 to Re,, = 3 and by 
using equation (13) to represent the data from 

t Nora he that 2.3 < Red 6 5 comprises the transition 
region from Darcy to Forchheimer flow and that 
80 < Red C 120 comprises the transition region from 
Forchheimer to turbulent flow. 

Re,, = 3 to ReFL = 5 ; and the errors incurred by 
using equation (13) to represent the data from 
ReFH = 80 to ReF, = 100 and by using equation (14) 
to represent the data from Re, = 100 to ReFL = 120 
are all listed in Table 2.t These errors are not excessive 
and hence it follows that equations (12)-(14) can be 
used to calculate the Nusselt number for forced con- 
vection over the entire range of interest of the 
Reynolds number. 

Combi~edfor&ed and natural ~onvecti~)n : Dar~~~ow 
Fifty one data points were obtained in the range 

0.5 < Gr, Re,’ < 4, for which natural convection 
effects are significant. All of these data fell in the Darcy 
regime (Re, < 2.3). The basic correlation hypothesis 
adopted in ref. [I] was employed here to correlate the 
present combined convection data. Thus, a natural 
convection component, per equation (3), was added 
to the forced convection expression, per equation (12), 
to yield the following combined correlation equation : 

Nu = [2.17(0.255+0.699Re~‘)+ C(Gr, Rei2) 

x (&.$649 pr~-~~~}]p~~.~88 ReF230 (15) 

where C is a constant to be determined from the data. 
It was found that the optimum value for C is 0.0451. 
With this value for C, equation (1.5) yields the errors 
shown in Table 2 vir-d-vis the ex~~mental data. These 
errors are consistent with the experimental error. Equa- 
tion (15) collapses to equation (12) as Gr, Re; 2 
approaches zero. 

RESUME AND CONCLUSIONS 

It has been shown that correlation hypotheses have 
been determined based upon a set of four assumptions, 
paramount among which is the assumption that cross 
flow past a heated cylinder embedded in a porous 
medium can be decomposed conceptually into ‘coarse’ 
and ‘fine’ components, which have lead to the sue 
cessful correlation of an extensive set of convection 
heat transfer data. The data extends from the Darcy 
regime into the turbulent regime and spans the inter- 
vening Forchheimer and transition regimes. A 
criterion, namely Gr, Re, 2 < 0.5, has been established 
which indicates whether natural convection effects are 
negligible in a given situation. For the present 
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geometry and for Gr, Reb 2 < 0.5 the following three upon equations (16~( 19) pending further infor- 

correlation equations have been determined : mation. 

Nu = 2.17(0.255+0.699ReE’) 

x~r0.‘88Rej.230; 

Nu = 2.15(0.255+0.699Rei5) 

xpr0.154~ej.‘26; 

Nu = 1.48(0.255+0.699Re:‘) 

In conclusion, it is suggested that the correlation 
procedure adopted here may yield useful results if 

0.5 < Re, < 3 (16) applied to other geometries, such as, for example, 
forced convection heat transfer in ducts packed with 
porous media. 

3 < Re, < 100 (17) Acknowledgement-This work was supported by NSF Grant 
No. CBT 83-12095. 

x p,O.290 Ref 179 ; Red > 100. (18) 

For 0.5 < Gr, Re;’ < 4 the following correlation l. 
equation has been determined for Darcy flow 
(0.1 < Re, < 2.3) : 

2. 

Nu = [2.17(0.255+0.699ReE5) 

+0.0451(Gr,Re~2)(Gr~649Pro~525)] 
3. 

x Pro-‘88 Rei230. (19) 

All properties in equations (16k(19) are to be evalu- 
ated at the mean film temperature. Since the appli- 4, 
cability of equation (7) was established in ref. [2] for 
d/D < 0.35, this must be regarded as a restriction 
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CONVECTION THERMIQUE AUTOUR D’UN CYLINDRE HORIZONTAL NOYE DANS 
UN MILIEU POREUX 

R&m&On presente les rtsultats d’une etude experimentale de transfert de chaleur par convection mixte 
autour d’un cylindre horizontal noyt dans un milieu poreux compose de spheres de verre, rang&es au 
hasard, et sature d’eau. La direction de l’ecoulement d’eau est horizontale et normale a l’axe longitudinal 
du cylindre. Le diametre du cylindre D est 11,45mm et le diametre equivalent des billes de verre est 
3,072 mm. On montre que la condition Gr,/ Rei 5 0,5 represente un crittre conservatif pour &parer les 
don&es qui sont fortement gouvemees par la convection forde de celles pour lesquelles les effets de 
convection naturelle sont forts. On presente un explication basie sur quatre hypotheses dont la principale 
est que l’ecoulement peut &tre consider& comme itant representable par une composante ‘grossiere’ et une 
autre ‘fine’. Cette hypothtse foumit une base pour unifier un ensemble de donntes de transfert de chaleur 
qui s’ttend depuis le regime de Darcy jusqu’aux regimes de Forchheimer et de transition. On suggere que 
la procedure d’analyse adopt&e peut etre appliqde favourablement a d’autres geometries comme, par 

exemple, la convection thennique forcee dans les canaux remplis par un milieu poreux. 

WARMEUBERGANG BE1 DER KOMBINATION VON ERZWUNGENER UND 
NATURLICHER KONVEKTION VON EINEM IN EINEM PORdSEN MEDIUM 

EINGEBETTETEN HORIZONTALEN ZYLINDER 

Zusammenfassung-Diese Arbeit berichtet iiber die Ergebnisse einer experimentellen Untersuchung des 
Wiinnetibergangs bei der gemischten erzwungenen und natiirlichen Konvektion von einem horizontalen 
Zylinder. Dieser ist in einem pot&en Medium eingebettet, das aus zufallig angeordneten Glaskugeln 
besteht und mit Wasser geslttigt ist. Die FlieDrichtung des Wassers war horizontal und normal zur 
Langsachse des Zylinders. Der Durchmesser des Zylinders war D = 11,45 mm und der lquivalente Durch- 
messer der Glaskugeln 3,072 mm. Es wird gezeigt, da8 die Bedingung Gr,/Rei = 0,5 ein konservatives 
Kriterium darstellt, das Wlrmeiibergangsdaten, die tiberwiegend von erzwungener Konvektion beherrscht 
werden, von denen unterscheidet, wo die natiirliche Konvektion bedeutend ist. Eine Korrelationshypothese 
fur konvektiven Warmeiibergang wird vorgestellt, die auf vier Annahmen basiert, von denen die wichtigste 
ist, daB der DurchfluB (begriflIich) als zusammengesetzt aus “groben” und “feinen” Komponenten ange- 
sehen werden kann. Diese Hypothese verschafft eine Grundlage fiir die erfolgreiche Korrelation eines 
Satzes experimenteller Wlrmeiibergangsdaten, der sich vom Darcy-Bereich bis zum turbulenten Bereich 
erstreckt und den dazwischenliegenden Forchheimer-Bereich und das Ubergangsgebiet iiberspannt. Es 1lBt 
sich vermuten, dal3 das hier angenommene Korrelationsverfahren brauchbare Ergebnisse liefert, wenn es 
auf andere Geometrien angewendet wird, z. B. auf den Wiirmeiibergang bei erzwungener Konvektion in 

mit poriisem Medium gefiillten Kaniilen. 
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KOMPMHkiPOBAHHbIL? BbIHYXAEHHbIti M ECTECTBEHHOKOHBEKTkiBHbIR 
TEI-IJIOI-IEPEHOC OT 1-OPM30HTAJlbHOl-0 QkiJIMHflPA, I-IOl-PYXEHHOI-0 B 

IIOPMCTYIO CPEAY 

AHHoTaunn-npencTasneHbr pe3ynbTaTbt sKcnepaMemanbHor0 wcnenoBawix Tennonepmoca npki me- 
".laHHOii KOHBBKUWW OT rOpH30HTanbHOrO UHJlHW,pa, ITOrpyreHHOrO B nOpN2TyIO Cpeny, KOTOpaK 

COCTOBT w3 xaomvecm pacnonomemmx cTewmwblx maparoe, HacbnuefiHym eonok l70~0~ Bonbr 

wkirancK ropa30HTanbHo B nepnewumynrprio ocn uwnesnpa. J$fahfeTp unnmnpa D comasnnn 11,45 
MM, a 3KBHBaneHTHbI6 LWaMeTp CTeKnIHHOrO IIIapHKa 6bm paBeH 3,072 MM. nOKa3aH0, 'IT0 yCJIOBkie 

Gr, Re, < 0.5 xapawepw3yeT 06nacTb 0TxnoHemn namblx no Tennoneperfocy, KoTopbte onpe- 
IZeJlEOTCII ,IpeHMyIL(eCTBeHHO BbIHyXUleHHOii KOHBeKUEIefi, OT TCX, B KOTOpbIX BKnall eCTeCTBeHHOfi 

KoHBeKumi 3HawiTeneH. ITpennoxeHa MeTonma annpommfaumnaemx no KoHBeKTmHohfy Tennone- 

peHOCy, KOTOpaK OCHOBaHa "a ',eTbIpeX II~~lTOnO~eHLifIX, OCHOBHOe H3 KOTOpbIX COCTOHT B TOM, 'iTO 

Te'leHHe MOxeT CgHTaTbCIl COCTOKLLWM A3 ccrpytibrx>) H ((TOHKBX)) KOMnOHeHTOB. nOKa3aH0, 'iTO 3Ta 

MeTomiKa Co3naeT oc~oey LUIK ycneIuHoZi KoppenRuHH iia6opa sKc.nepHMeHTanbHslx naHHblx no Ten- 

nOO6MeHy,KOTOpaK OXBaTbIBaeTLIUana30H OT pt%iCUivfa, OllHCblBaeMO~O 3BKOHOM &ipCH,nO Typ6yJIeHT- 

Hero, a Tame npoMemyTowbG penm 0opmxafihfepa ti nepexomwfl. IIpegnonaraeTcn, wo 
n~&JIO)KeHHaK MeTOnHKa o6o6uremin MO%eT LIaTb nOJle3HbIe ~3yJIbTaTbI,eCJUi IIpHMeHRTb ee K TaKHM 

TeOMeTpWRM, HatIpHMep, KaK BbIHyEneHHbIfi KOHBeKTHBHbIti Te~JlOne~HOC B KaHaJlaX, 3anOJlHeHHbIX 


